Ćwiczenie 7.

Wyznaczenie parametrów farmakokinetycznych salicylanów tworzących się z kwasu acetylosalicylowego w moczu.

Ćwiczenie polega na oznaczeniu ilości salicylanów wydalonych z moczem po zażyciu 600 mg kwasu acetylosalicylowego (2 tabletki po 300 mg), obliczeniu ich parametrów farmakokinetycznych i porównaniu z parametrami farmakokinetycznymi obliczonymi dla dawek 385 mg, 770 mg i 1155 mg w celu zbadania wpływu dawki kwasu acetylosalicylowego na farmakokinetykę salicylanów.

Wprowadzenie. W eliminacji znacznej części stosowanych obecnie leków bierze udział proces o ograniczonej pojemności, np. metabolizm wątrobowy, a mimo to wykazują one farmakokinetykę liniową. Dzieje się tak, ponieważ po podaniu dawek terapeutycznych tych leków, ich stężenia w organizmie nie powodują wysycenia enzymów lub transporterów błonowych uczestniczących w ich dyspozycji (przeciwieństwo do fenytoiny). W rezultacie, ich eliminacja przebiega zgodnie z kinetyką pierwszego rzędu (w równaniu Michaelisa-Menten C << K_M). Dodatkowo, w eliminacji leku mogą współuczestniczyć procesy liniowe (niewysycane), takie jak filtracja nerkowa, które częściowo kompensują efekt wysycenia procesu o ograniczonej pojemności. Dobrym przykładem są tutaj salicylany, w których eliminacji biorą udział 3 procesy liniowe oraz 2 o ograniczonej pojemności enzymatycznej. Po podaniu małych dawek kwasu acetylosalicylowego, eliminacja utworzonych z niego salicylanów przebiega zgodnie z kinetyką pierwszego rzędu, natomiast po podaniu dużych (przeciwzapalnych) dawek leku obserwuje się nieliniową farmakokinetykę salicylanów.

Zakładając, że faza absorpcji doustnie podanej polopiryny jest szybka ($k_a \gg k_e$), w obliczeniach przyjęto uproszczone równanie opisujące kumulowaną ilość lelku w moczu, analogicznie do równania dla podania dożylnego. Do opisu dystrybucji salicylanów zastosowano model jednokompartmentowy. Zgodnie z tymi założeniemi, ilość leku wydaloną z moczem opisuje równanie:

$$\ln(X_{u}^{\infty} - X_{u}) = \ln \frac{k_{a} \cdot X_{u}^{\infty}}{k_{a} - k_{e}} - k_{e} \cdot t$$
(4.1)

Ilość salicylanu sodu w przeliczeniu na kwas acetylosalicylowy w poszczególnych próbkach moczu oblicza się korzystając ze wzoru:

$$X_{u_i} = \frac{A_i}{a} \cdot N \cdot V_i \cdot 1,12516$$
(4.2)

gdzie:

A_i – absorbancja próbki

a - współczynnik kierunkowy krzywej wzorcowej

N – rozcieńczenie próbki

V_i – objętość próbki oddanego moczu

1,12516 – współczynnik równy stosunkowi mas molowych kwasu acetylosalicylowego i salicylanu sodu.

Sumaryczną (kumulowaną) ilość kwasu acetylosalicylowego X_u wydaloną jako salicylan sodu w kolejnych *n* próbkach moczu oblicza się z zależności:

$$X_{u} = \sum_{i=1}^{n} X_{u_{i}}$$
(4.3)

Studenci wykonują ćwiczenie wykorzystując gotowe próbki moczu zebrane w sposób przedstawiony poniżej w punkcie B i przechowywane w temperaturze –20 °C do czasu analizy. Do oznaczeń ilościowych salicylanów wykorzystano metodę kolorymetryczną polegającą na pomiarze absorbancji barwnego kompleksu z jonami Fe³⁺.

Aparatura: spektrofotometr (SP-830 PLUS Metertech, Taiwan).

Odczynniki i roztwory: salicylan sodu (0,2%), odczynnik Trindera (120 ml 1 mol/dm³ HCl, 40 g Fe(NO₃)₃ x 9 H₂O, woda destylowana do 1000 ml.

Szkło i materiały laboratoryjne: probówki o pojemności 10 ml, pipety automatyczne o pojemności od 1 ml do 5 ml.

Wykonanie:

A. Wyznaczenie krzywej wzorcowej salicylanu sodu

 Do probówek odmierzyć roztwór salicylanu sodu oraz mocz kontrolny w objętościach (ml) podanych w Tabeli 1.

Tabela 1.

Dodawane	Nr probówki					
roztwory	1	2	3	4	5 Bréhlio	
(111)	I	2	5	4	kontrolna	
Mocz	1	1	1	1	1	
Salicylan sodu	0,25	0,5	0,75	1	-	
H ₂ O	3,75	3,5	3,25	3	4	

2. Pobrać po 1 ml roztworów z każdej probówki i dodać 5 ml odczynnika Trindera. Zmierzyć absorbancję wobec próbki kontrolnej przy długości fali $\lambda = 540$ nm. Wyniki zapisać w tabelce.

3. Obliczyć równanie krzywej wzorcowej A=f (C) i wykreślić zależność absorbancji od stężenia salicylanu sodu, wykorzystując arkusz programu Excel.

B. Oznaczenie ilości salicylanów w przeliczeniu na kwas acetylosalicylowy wydalonych z moczem i obliczenie parametrów farmakokinetycznych

Przygotowane do analizy próbki moczu zbierano w następujący sposób:

- 1. Po przebudzeniu oddać mocz. Wypić 1 szklankę wody przynajmniej na 30 min. przed przyjęciem polopiryny.
- Zażyć polopirynę (2 tabletki po 300 mg), wypić szklankę wody i oddać mocz, zwracając uwagę na całkowite wypróżnienie pęcherza. Zanotować czas (t₀), zmierzyć objętość moczu, zostawiając ok. 10 ml do analizy.
- Zbierać mocz przez 24 godz. (z wyjątkiem przerwy nocnej), zmierzyć objętość moczu, zostawiając ok. 10 ml do analizy.
- 4. Oznaczyć stężenie salicylanów w sposób opisany w części A (pkt. 1 i 2). Próbki moczu rozcieńczyć w sposób opisany w Tabeli 1 (probówka nr 5).

- 5. Wyznaczyć ilość salicylanów w przeliczeniu na kwas acetylosalicylowy w każdej próbce moczu (X_{ui}) oraz sumaryczną (kumulowaną) ilość wydaloną z moczem w danym czasie (X_u).
- 6. Sporządzić wykres zależności $X_u = f(t)$ wykorzystując arkusz programu Excel. Ustalić wartość graniczną X_u^{∞} oraz obliczyć $X_u^{\infty} X_u$.
- 7. Sporządzić wykres zależności $\ln(X_u^{\infty} X_u) = f(t)$, wykorzystując arkusz programu Excel. Z nachylenia prostej obliczyć stałą szybkości eliminacji k_e, a następnie biologiczny okres półtrwania t_{0,5}.

C. Obliczenie parametrów farmakokinetycznych po doustnym podaniu 385 mg, 770 mg i 1155 mg kwasu acetylosalicylowego z wykorzystaniem programu komputerowego TopFit na podstawie danych literaturowych przedstawionych w tabeli:

Dawka kwasu acetylosalicylowego									
[mg]									
385		770		1155					
Czas	Stężenie	Czas	Stężenie	Czas	Stężenie				
[h]	mg/l	[h]	mg/l	[h]	mg/l				
0,5	57	0,5	122	0,4	160				
1,0	53	0,9	107	2,0	165				
1,9	37	2,0	90	3,5	142				
4,0	22	3,6	79	3,8	130				
6,5	10	6,2	53	6,5	92				
8,5	5,7	8,3	39	8,5	80				
12,5	1,6	12,8*	13*	9,5	80				

Tabela 2. Zmiany stężenia w osoczu po podaniu różnych dawek kwasu acetylosalicylowego

-	-	14,0	9,2	12,4	36
-	-	16,0	5,4	12,5*	46*
-	-	18,0	2,8	15,0	29
-	-	20,0	1,4	17,5	14
-	-	-		20,5	6
-	-	-		24,0	1,7

*Pogrubioną czcionką przedstawiono wyniki, dla których należy dodatkowo wyznaczyć równanie liniowe lnC = f(t) dla fazy eliminacji leku w programie TopFit

- 1. Uruchomić program TopFit.
- Otwiera się strona MENU SELECTION, a na niej MAIN MENU, z którego należy wybrać opcję 4 – EDIT HEADER. Otwiera się strona HEADER, którą należy opisać, zmieniając okienka tabulatorem, a następnie wcisnąć klawisz F1 (Save).
- 3. Z MAIN MENU wybrać opcję 5 EDIT DATA.
- 4. Otwiera się strona FORMULATION DATA. Po wciśnięciu klawisza spacji wybiera się sposób podania leku (Absorption Tablet).
- 5. Wcisnąć klawisz F7. Otwiera się strona DOSING TABLE. Przy pomocy spacji należy rozwinąć listę jednostek czasu i podanej dawki i wybrać odpowiednie jednostki. W tabelce należy wpisać czas t = 0 i podaną dawkę leku (385), a następnie zatwierdzić klawiszem F1.
- 6. Wcisnąć klawisz F8. Otwiera się strona DATA SETS. Po jej opisaniu należy zatwierdzić klawiszem F1.
- Podwójnie wcisnąć klawisz F8. Do tabeli należy wpisać dane z Tabeli 2 dotyczące stężeń salicylanów oznaczonych w odpowiednich punktach czasowych dla dawki 385 mg. Nacisnąć trzykrotnie F1.
- Z MAIN MENU wybrać opcję 8 ENTER METHODS MENU, a z METHODS MENU opcję 2 – STANDARD COMPARTMENT MODELS.
- 9. Z SELECT DISPOSITION MODEL należy wybrać opcję 1 ONE COMPARTMENT.
- Ze STANDARD COMPARTMENT MODELS należy wybrać opcję 1 SELECT DATA SETS.
- 11. Na stronie LIST SELECTION należy zaznaczyć myszą ► z lewej strony przy pozycji
 1 i wcisnąć F1.
- 12. Ze STANDARD COMPARTMENT MODEL wybrać opcję 6 START ITERATION.

- Na stronie RESULTS MENU wybrać opcję 2 VIEW GRAPHICS. Przeanalizować przebieg wykresu z asystentem.
- Nacisnąć F3 otwiera się strona GRAPHIC PARAMETERS, wprowadzić log na osi y i nacisnąć F1. Przeanalizować przebieg wykresu z asystentem.
- 15. Po naciśnięciu F10 na ekranie ponownie pojawia się RESULTS MENU, z którego należy wybrać opcję 1 VIEW RESULTS.
- Otwiera się strona LIST SELECTION. Aby przeglądać dane należy zaznaczyć READY (F1).
- 17. Zanotować wartość stałej szybkości eliminacji i biologicznego okresu półtrwania.
- 18. Powtórzyć przedstawiony wyżej sposób postępowania wpisując do programu TopFit kolejno wyniki z Tabeli 4.2 po podaniu dawek 770 mg i 1155 mg. Zanotować wartości stałych szybkości eliminacji i biologicznych okresów półtrwania.
- 19. Przeanalizować uzyskane wyniki z asystentem.