ĆWICZENIE 8. Farmakokinetyka gentamycyny po podaniu wielokrotnym w postaci wlewu dożylnego i iniekcji domięśniowej

Cel ćwiczenia

Analiza podania wielokrotnego wlewu dożylnego i iniekcji domięśniowej gentamycyny w modelu dwukompartmentowym. Optymalizacja schematów dawkowania na podstawie wyznaczonych parametrów farmakokinetycznych

WYKONANIE

A. Porównanie parametrów farmakokinetycznych gentamycyny po wielokrotnym podaniu dawki 100 mg leku w postaci wlewów dożylnych oraz iniekcji domięśniowych dla pacjenta z zaburzoną czynnością nerek.

Czas podania [h]	Dawka [mg]	Czas trwania wlewu*
		[h]
0	100	0,5
8	100	0,5
16	100	0,5
24	100	0,5
32	100	0,5
40	100	0,5
48	100	0,5

Tabela 1. Dawkowanie leku podanego w postaci wlewu i w postaci iniekcji domięśniowych

*dotyczy tylko wielokrotnego podania wlewu dożylnego

Tabela 2. Zmiany stężenia gentamycyny w osoczu po wielokrotnym podaniu we wlewie dożylnym oraz w postaci iniekcji domięśniowych

Po podaniu wlewów dożylnych		Po podaniu iniekcji domięśniowych	
Czas [h]	Stężenie [mg/l]	Czas [h]	Stężenie [mg/l]
1	5,01	0,25	0,815
8	0,828	0,5	1,81
9	5,77	0,75	2,28
16	1,25	1	2,44
17	6,15	2	2,14
24	1,46	3	1,70
25	6,35	4	1,41
32	1,57	6	1,09
33	6,45	8	0,895
40	1,62	16	1,35

41	6,50	24	1,58
48	1,65	24,25	2,36
48,25	3,59	24,5	3,32
48,5	4,92	24,75	3,76
48,75	5,84	25	3,89
49	6,52	26	3,47
49,5	4,16	28	2,53
50	3,22	30	2,04
50,5	2,82	32	1,70
51	2,60	40	1,76
52	2,35	48	1,79
53	2,15	48,25	2,56
56	1,66	48,5	3,52
60	1,19	49	4,08
64	0,844	50	3,64
72	0,428	52	2,68
		56	1,80
		60	1,28
		64	0,910
		72	0,462

1. Uruchomić program TopFit.

2. Otwiera się strona MENU SELECTION, a na niej MAIN MENU, z którego należy wybrać opcję 4 – EDIT HEADER. Otwiera się strona HEADER, którą należy opisać, zmieniając okienka tabulatorem, a następnie wcisnąć klawisz F1 (Save).

3. Z MAIN MENU wybrać opcję 5 – EDIT DATA.

4. Otwiera się strona FORMULATION DATA. Po wciśnięciu klawisza spacji wybiera się sposób podania leku (Bolus/Infusion).

5. Wcisnąć klawisz F7. Otwiera się strona DOSING TABLE. Przy pomocy spacji należy rozwinąć listę jednostek czasu i podanej dawki i wybrać odpowiednie jednostki. W tabelce należy wpisać czasy podania leku, dawki i czasy trwania wlewów zgodnie z Tabelą 1, a następnie zatwierdzić klawiszem F1.

6. Wcisnąć klawisz F8. Otwiera się strona DATA SETS. Należy wpisać rodzaj matrycy biologicznej i jednostkę, w której wyrażono stężenia. Wybrać funkcję ważenia $1/y^2$, a następnie zatwierdzić klawiszem F1.

7. Podwójnie wcisnąć klawisz F8. Do tabeli należy wpisać dane z Tabeli 2 dotyczące stężeń gentamycy oznaczonych w odpowiednich punktach czasowych po wielokrotnym podaniu dawki 100 mg w postaci wlewów dożylnych. Nacisnąć trzykrotnie F1.

8. Z MAIN MENU wybrać opcję 8 – ENTER METHODS MENU, a z METHODS MENU opcję 2 – STANDARD COMPARTMENT MODELS.

9. Z SELECT DISPOSITION MODEL należy wybrać opcję 2 – TWO COMPARTMENT.

10. Ze STANDARD COMPARTMENT MODELS należy wybrać opcję 1 – SELECT DATA SETS.

11. Na stronie LIST SELECTION należy zaznaczyć myszą ► z lewej strony przy pozycji 1 i wcisnąć F1.

12. Ze STANDARD COMPARTMENT MODEL wybrać opcję 6 – START ITERATION.

13. Na stronie RESULTS MENU wybrać opcję 2 – VIEW GRAPHICS. Przeanalizować przebieg wykresu z asystentem.

14. Nacisnąć F3 – otwiera się strona GRAPHIC PARAMETERS, wprowadzić log na osi y i nacisnąć F1. Przeanalizować przebieg wykresu z asystentem.

15. Po naciśnięciu F10 na ekranie ponownie pojawia się RESULTS MENU, z którego należy wybrać opcję 1 – VIEW RESULTS.

16. Otwiera się strona LIST SELECTION. Aby przeglądać dane należy zaznaczyć READY (F1).

- 17. Zanotować wartości parametrów farmakokinetycznych.
- 19. Powtórzyć przedstawiony wyżej sposób postępowania wpisując do programu TopFit kolejno wyniki z Tabeli 2 po podaniu wielokrotnym iniekcji domięśniowych. W tym przypadku na stronie FORMULATION DATA, po wciśnięciu klawisza spacji wybiera się sposób podania leku (Absorption/i.m.).
- 20. Przeanalizować uzyskane wyniki z asystentem.

B. Optymalizacja dawkowania gentamycyny na podstawie parametrów farmakokinetycznych

Korzystając z programu *Optymalizacja dawkowania – Antybiotyki* sprawdź, czy zaproponowany schemat leczenia pozwoli na uzyskanie stężeń terapeutycznych gentamycyny u 30-letniej kobiety o masie ciała 70 kg i wzroście 172 cm, która została przyjęta do szpitala z wysoką gorączką o nieznanej etiologii. Oznaczone stężenie kreatyniny w surowicy wynosiło 0.9 mg/dl. Zaproponowano leczenie gentamycyną w dawkach 250 mg podawanych w postaci półgodzinnych wlewów dożylnych co 8 h.

Można założyć, że po podaniu leku w postaci krótkotrwałych wlewów dożylnych, stężenia w stanie stacjonarnym są zbliżone do stężeń uzyskiwanych po wielokrotnym podaniu dożylnym. Przyjąć docelowe wartości stężeń w stanie stacjonarnym: $C_{max}^{ss} = 8 - 10 \ \mu g/ml$, $C_{min}^{ss} < 2 \ \mu g/ml$.

- 1. Otworzyć plik Optymalizacja dawkowania Antybiotyki.
- 2. W arkuszu *Start* wpisać cel ćwiczenia.
- 3. W arkuszu *Lek* wpisać informacje dotyczące gentamycyny, takie jak współczynnik solny, biodostępność, zakres terapeutyczny i droga podania. Uwaga w preparatach farmaceutycznych gentamycyna występuje w postaci siarczanu, jednak ze względu na to, że dawka 250 mg odnosi się do gentamycyny w formie zasady, dla współczynnika solnego wpisać wartość 1.
- 4. W arkuszu Pacjent wpisać informacje dotyczące pacjentki.
 - a) Na podstawie obliczonej wartości BMI ocenić konieczność wykorzystania idealnej masy ciała w obliczeniach klirensu kreatyniny
 - b) Obliczyć objętość dystrybucji z wzoru: 0,25 l/kg · DW DW – masa dawkowania, opisana wzorem:

 $DW = IBW + 0.4 \cdot (TBW - IBW)$ TBW - aktualna masa ciała pacjenta IBW - idealna masa ciała

- c) Obliczyć klirens gentamycyny w przeliczeniu na jednostkę (l/h) na podstawie wyznaczonego klirensu kreatyniny z wzoru Cockrofta-Gaulta.
- 5. W arkuszu Wyniki wpisać dawkę leku oraz przedział dawkowania. Zanotować wyliczone wartości C^{ss}_{max}, C^{ss}_{min}oraz wartości parametrów farmakokinetycznych. W celu oszacowania stężenia w stanie stacjonarnym w dowolnym czasie po podaniu leku, należy wpisać czas liczony od momentu podania pierwszej dawki. Przeanalizować wyniki z asystentem.
- 6. Ustalić alternatywne schematy dawkowania gentamycyny (dawka i przedział dawkowania), umożliwiające uzyskanie stężeń terapeutycznych leku.

C. Optymalizacja dawkowania gentamycyny w oparciu o kryteria PK/PD

Dziewczynka (wiek 9 dni, masa ciała 2500 g) jest leczona gentamycyną w dawce 2,5 mg/kg co 8 godzin. Stężenie gentamycyny w próbce pobranej 1 godz. po rozpoczęciu wlewu wynosiło 8 mg/l (C_{max} ^{ss*}), a stężenie leku w próbce pobranej tuż przed podaniem kolejnej dawki było równe 3 mg/l (C_{min}). Badania mikrobiologiczne wykazały obecność Pseudomonas aeruginosa a wyznaczone MIC wynosiło 1 µg/mL.

Określ skuteczność prowadzonej terapii antybakteryjnej u tej dziewczynki, przyjmując docelowe wartości PK/PD: $\frac{C_{max}^{ss}}{MIC} = 10$, AUC₂₄/MIC = 70 – 100.